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Abstract
After a review of some of the recent works by Holm and Gibbon on quaternions
and their application to Lagrangian flows, particularly the incompressible
Euler equations and the equations of ideal MHD, this paper investigates the
compressible and relativistic Euler equations using these methods.

PACS numbers: 47.35.Tv, 47.65.−d, 52.30.Cv

1. Introduction

1.1. Background to the problem

Hamilton originally invented quaternions as an algorithm for rotating the telescope in his
observatory but he was generally unable to convince his contemporaries of their importance.
However, their more recent application to astro/aeronautics, robotics and computer animation
has been more successful because of their efficacy in dealing with moving systems that undergo
in-flight three-axis rotations (Kuipers 1999, Hanson 2006). A recent attempt has been made
by Holm and co-workers to reformulate the vorticity dynamics of the three-dimensional
incompressible Euler equations in terms of quaternions, particularly in tracking fluid particles
that carry their own ortho-normal coordinate systems (Gibbon et al 2006, Gibbon and Holm
2007a, 2007b, Gibbon 2007a). For all their simplicity, the incompressible Euler equations
possess subtle geometric features that are by no means understood (Majda and Bertozzi 2000,
Gibbon 2007b). These properties are shared by a class of Lagrangian evolution equations of
which the incompressible Euler equations and ideal MHD are just two examples (Moffatt and
Tsinober 1990, 1992, Ricca and Moffatt 1992, Kuznetsov and Ruban 1998, 2000, Kuznetsov
2002). Certain variables can be naturally cast into an appropriate quaternionic form thus
furnishing us with a language that is an alternative look at the dynamics of alignment processes
concerning the strain matrix.

The incompressible Euler equations themselves are conventionally written in terms of the
velocity field u(x, t) and the pressure P(x, t) as

Du

Dt
= −ρ−1

0 ∇P,
D

Dt
= ∂

∂t
+ u · ∇, (1.1)
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where div u = 0 is the incompressibility condition and ρ = ρ0 is the constant density which
can be set to unity. Applying this condition to (1.1) forces the pressure to satisfy an elliptic
equation

−�P = ∂ui

∂Xj

∂uj

∂Xi

, (1.2)

the right-hand side of which involves the products of velocity gradients. Equation (1.2) can
be re-written as

−�P = ∂ui

∂Xj

∂uj

∂Xi

= Tr(S2) − 1

2
ω2 (1.3)

in terms of the strain matrix S

Sij = 1

2

(
∂ui

∂Xj

+
∂uj

∂Xi

)
, (1.4)

while the vorticity ω = curl u obeys the Euler equations in their vorticity form

Dω

Dt
= ω · ∇u = Sω. (1.5)

Of course, for the compressible Euler equations, ρ is not constant but satisfies

Dρ

Dt
= −ρ div u. (1.6)

Moreover, the relation between the pressure P and ρ needs some thermodynamic input (see
section 2).

The motivation for the introduction of quaternions comes from the incompressible case
in the following way: define the growth and swing rate variables α and χ as

α = ω̂ · Sω̂, χ = ω̂ × Sω̂, (1.7)

where ω̂ is a unit vector along the vorticity ω. Then, using the parallel/perpendicular
decomposition

Sω = αω + χ × ω, (1.8)

it is easily seen that ω = |ω| and ω̂ satisfy

Dω

Dt
= αω,

Dω̂

Dt
= χ × ω̂. (1.9)

The scalar α and the 3-vector χ when put together as a 4-vector quaternion play a crucial
role in determining the direction and growth of vorticity. The properties of these applied
to the abstract Lagrangian flow and acceleration are seen in the following two subsections.
Thereafter, we discuss the compressible Euler equations.

1.2. The definition and some properties of quaternions

A quaternion is constructed from a scalar s and a 3-vector r by forming the tetrad q = [s, r]
defined by (Tait 1890, Whittaker 1944)

q = [s, r] = sI − r · σ(P ), (1.10)

where r · σ(P ) = ∑3
i=1 riσ

(P )
i and I is the 2 × 2 unit matrix. σ(P ) = {

σ
(P )
1 , σ

(P )
2 , σ

(P )
3

}
are

the Pauli spin matrices

σ
(P )
1 =

(
0 i
i 0

)
, σ

(P )
2 =

(
0 1

−1 0

)
, σ

(P )
3 =

(
i 0
0 −i

)
. (1.11)
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These obey the relations σiσj = −δij I − εijkσk and generate a multiplication rule between
two tetrads q1 = [s1, r1] and q2 = [s2, r2]:

q1 � q2 = [s1s2 − r1 · r2, s1r2 + s2r1 + r1 × r2] . (1.12)

A quaternion of the type w = [0,w] is called a pure quaternion. The product between two of
them can be expressed as

w1 � w2 = [0,w1] � [0,w2] = [−w1 · w2,w1 × w2]. (1.13)

There is also a quaternionic version of the gradient operator ∇ = [0,∇] which, when acting
upon a pure quaternion u = [0,u], gives

∇ � u = [−div u, curl u]. (1.14)

If the field u is divergence-free, as for an incompressible fluid, then

∇ � u = [0, ω] ≡ w, (1.15)

which is itself a pure quaternion. w will be used often in the following sections.

1.3. Lagrangian flow and acceleration

The idea has been to consider a general quaternionic picture of the process of Lagrangian
flow and acceleration in fluid dynamics. This is explained in this section by considering the
abstract Lagrangian flow equation3

Dw

Dt
= σ(X, t), (1.16)

whose Lagrangian acceleration equation is given in general by

D2w

Dt2
= Dσ

Dt
= b(X, t). (1.17)

These are the rates of change of these vectors following the characteristics of the velocity
generating the path X(t) of a Lagrangian fluid particle determined from dX/dt = u(X, t)

(see figure 1).
Given the Lagrangian equation (1.16), one defines the scalar ασ and the 3-vector χσ as

ασ = w−1(ŵ · σ), χσ = w−1(ŵ × σ), (1.18)

in which w = wŵ with w = |w|. As observed in (1.8), the 3-vector σ can be decomposed
into parts that are parallel and perpendicular to w through the quaternionic language as

[0, σ] = [0, ασ w + χσ × w] = [ασ , χσ ] � [0,w]. (1.19)

The growth rate ασ of the scalar magnitude w = |w| and the unit tangent vector ŵ = ww−1

obey

Dw

Dt
= ασw,

Dŵ

Dt
= χσ × ŵ, (1.20)

as in (1.9).
This enables us to define two quaternions

qσ = [ασ , χσ ] and qb = [αb, χb], (1.21)

3 In other references, the symbol a(X, t) was used as the notation for the right-hand side of (1.16) whereas here it
is σ(X, t). The change of notation has been rendered necessary by the standard use of a, a Lagrangian label.
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Figure 1. The dotted line represents the path of the Lagrangian fluid particle (•), whereas the solid
curves represent characteristic curves to which w is a unit tangent vector. The orientation of the
quaternion-frame (ŵ, χ̂σ , ŵ × χ̂σ ) is shown at the two spacetime points; note that this is not the
Frenet-frame corresponding to the particle path but to the characteristic curves.

where αb, χb are defined as in (1.18) for ασ , χσ with σ replaced by b. Let w = [0,w] be
the pure quaternion satisfying the Lagrangian evolution equation (1.16). Then (1.16) can
automatically be re-written in the quaternion form

Dw

Dt
= [0, σ] = [0, ασw + χσ × w] = qσ � w. (1.22)

If σ is Lagrangian-differentiable as in (1.17), then it is clear that a similar decomposition for
b as that for σ in (1.8) gives

D2w

Dt2
= [0, b] = [0, αbw + χb × w] = qb � w. (1.23)

Using the associativity property, compatibility of (1.23) and (1.22) implies that(
Dqσ

Dt
+ qσ � qσ − qb

)
� w = 0. (1.24)

From equation (1.24), there follows the following theorem.

Theorem 1 (Gibbon and Holm 2007a, Gibbon 2007a, 2007b). The quaternions qσ and qb

satisfy the Riccati relation

Dqσ

Dt
+ qσ � qσ = qb. (1.25)

The ortho-normal quaternion-frame (ŵ, χ̂σ , ŵ × χ̂σ ) ∈ SO(3) has Lagrangian time
derivatives expressed as

Dŵ

Dt
= Dσ × ŵ, (1.26)

D(ŵ × χ̂σ )

Dt
= Dσ × (ŵ × χ̂σ ), (1.27)

Dχ̂σ

Dt
= Dσ × χ̂σ , (1.28)

where the Darboux vector Dσ is defined as

Dσ = cb

χσ

ŵ + χσ with cb = χb · (ŵ × χ̂σ ) (1.29)

the angular frequency of rotation of the ortho-normal frame (ŵ, χ̂σ , ŵ × χ̂σ ).

Thus, we conclude that if we have explicit knowledge of the quartet of vectors

{u,w, σ, b}, (1.30)

4
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then the results of theorem 1 are valid. The main question, however, lies in the existence of
the vector b which does not necessarily exist for every problem. In fact, Ertel’s theorem is
the key to this issue (Ertel 1942, Ohkitani 1993, Ohkitani and Kishiba 1995) and has been
discussed at length in Gibbon and Holm (2007a, 2007b) and Gibbon (2007a, 2007b). It tells
us that if σ takes the form σ = w · ∇u, then

D(w · ∇µ)

Dt
= w · ∇

(
Dµ

Dt

)
. (1.31)

Thus, for the incompressible Euler equations, if w = ω and if we identify µ with the ith
component of the Euler velocity field µ = ui , then

b = −Pw, (1.32)

where P is the Hessian matrix of the pressure P:

P = ∂2P

∂Xi∂Xj

. (1.33)

Thus, for the incompressible Euler equations, the quartet in (1.30) is

{u,w, σ, b} = {u, ω,Sω,−Pw}. (1.34)

For a general quartet as expressed in (1.30), u and w may be independent 3-vectors but for
Euler w = ω = curl u. One must also keep in mind that S and P are also non-locally related
by

−TrP = Tr(S2) − 1
2ω2, (1.35)

as in (1.3).

2. Compressible Euler equations with thermodynamic local equilibrium

We introduce the specific heat function (per unit mass) h = ε + ρ−1P , where ε is the specific
internal energy, P is the pressure, S is the specific entropy and ρ is the fluid density. Then we
have

dh = dε + ρ−1 dP + P d(ρ−1) (2.1)

and the first law of thermodynamics

dε = T dS − P d(ρ−1). (2.2)

Together these imply that

dh = T dS + ρ−1 dP. (2.3)

We can relate ρ−1∇P to ∇h and ∇S by

−ρ−1(∇P · dX) = −ρ−1 dP

= −dh + T dS

= −∇h · dX + T ∇S · dX. (2.4)

Thus, we have

−ρ−1∇P = −∇h + T ∇S. (2.5)

This can then be taken in combination with the compressible Euler equations of motion

Du

Dt
= ∂u

∂t
+ u · ∇u = −ρ−1∇P, (2.6)

5
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the continuity equation

Dρ

Dt
= −ρ div u (2.7)

and the equation of entropy conservation

DS

Dt
= 0, (2.8)

together with an equation of state S = S(ρ, T ). Substitution of (2.5) into (2.6) yields

Du

Dt
= −∇h + T ∇S. (2.9)

Using the vector identity u · ∇u = 1
2∇(u2) − u × ω gives

∂u

∂t
= u × ω − ∇

(
h +

1

2
u2

)
+ T ∇S, (2.10)

and curling both sides then gives

∂ω

∂t
= curl(u × ω) + ∇T × ∇S. (2.11)

The frozenness of ω in the fluid motion is broken by the last term. To see this, let us use
another identity

curl(u × ω) = ω · ∇u − u · ∇ω + u div ω − ω div u. (2.12)

Together with (2.7), and using the definition

ωρ = ρ−1ω, (2.13)

we have
Dωρ

Dt
= ωρ · ∇u + ρ−1(∇T × ∇S). (2.14)

Hence we have the correspondence

σ ←→ ωρ · ∇u + ρ−1∇T × ∇S, (2.15)

w ←→ ωρ. (2.16)

In terms of quaternions, we have

q = [ασ , χσ ], w = [0,w] (2.17)

so specifically in terms of ασ and χσ defined in (1.18)

ασ = |ωρ |−1ω̂ · [ωρ · ∇u + ρ−1(∇T × ∇S)], (2.18)

χσ = |ωρ |−1ω̂ × [ωρ · ∇u + ρ−1(∇T × ∇S)] (2.19)

= ω̂ × (ω̂ · ∇u) + ω−1ω̂ × (∇T × ∇S). (2.20)

It is important to note that the vector ∇T × ∇S lies in the intersection of surfaces of constant
temperature and entropy so all thermodynamical quantities are constant along this vector

∇T × ∇S =
(

∂T

∂ρ
∇ρ +

∂T

∂S
∇S

)
× ∇S = ∂T

∂ρ
∇ρ × ∇S. (2.21)

6
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ω̂ · (∇T × ∇S) is related to the projection of ω on the curve of constant thermodynamical
parameters. The first term in χσ is similar to the isentropic (barotropic) case. The second
term is

ω−1ω̂ × (∇T × ∇S) = ρω−2[(ωρ · ∇S)∇T − (ωρ · ∇T )∇S]. (2.22)

The term ωρ · ∇S is a Lagrangian invariant which we will consider later.
It is worth noticing that if the equation of state is known experimentally, then it is possible

to find the right-hand side of (2.22) because u and ρ can be measured experimentally. To
illustrate this, let us write

ω−1ω̂ × (∇T × ∇S) = ρω−2ωρ ×
(

∂T

∂ρ
∇ρ × ∇S

)
(2.23)

= ρω−2 ∂T

∂ρ
[(ωρ · ∇S)∇ρ − (ωρ · ∇ρ)∇S]. (2.24)

Thus, if we can experimentally measure ρ and T as the functions of (x, t), we can evaluate
χσ because u and ω are also known experimentally.

2.1. The Lagrangian coordinates

From the definitions of σ and b given in (1.16) and (1.17), respectively, we note that to
calculate b it is better to use the Lagrangian coordinates (a, t) such that

u = DX

Dt
= ∂X(a, t)

∂t
, X = X(a, t), a ≡ X(a, t = 0). (2.25)

So X(a, t) is the trajectory of fluid particles. This naturally implies two kinds of spatial
and time derivatives for any arbitrary fluid variable f . The first kind consists of Eulerian
derivatives such as ∇f or ∂f/∂t which are taken when f is considered as a function of X
and t. The other one includes Lagrangian derivatives such as ∇af or [∂f (a, t)/∂t] = Df/Dt

introduced when f is expressed as a function of the initial (Lagrangian) coordinates a and
time t. In this paper, we frequently use these two kinds of derivatives.

Now we introduce the vector ũ,

ũ = uj∇aXj, (2.26)

and define

ω0(a, t) = ∇a × ũ = curlaũ. (2.27)

Then

ωρ = (
ω0,ρ0 · ∇a

)
X, (2.28)

ω0,ρ0 ≡ ρ−1
0 ω0 = (ωρ · ∇)a, (2.29)

in which ρ0(a) is the initial density distribution. In the first equation (2.28) X = X(a, t), and
in the second equation (2.29) it can be seen that a = a(X, t) is indeed the inverse function
of X(a, t).

It is easily seen from (2.28) that

ωρ · ∇ = ω0,ρ0 · ∇a. (2.30)

Finally, it can be shown that
Dω0

Dt
= ∂ω0(a, t)

∂t
= ∇aT × ∇aS(a). (2.31)

The proof of equations (2.28), (2.29) and (2.31) are given in the appendix.

7
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2.2. Ertel’s theorem

Now we are able to prove a version of Ertel’s theorem.

Theorem 2. ωρ and S satisfy

D(ωρ · ∇S)

Dt
= 0. (2.32)

Proof. By making the scalar product of both sides of (2.31) with ρ−1
0 ∇aS and using the

Lagrangian invariance of the entropy, s = s(a) (see (2.8)), we find

∂

∂t
[ω0,ρ0(a, t) · ∇aS(a)] = 0. (2.33)

Finally, we apply (2.30) to (2.33) and reach to our goal. �

Now we are ready to calculate Dσ/Dt = b from (2.15):

D

Dt
[(ωρ · ∇)u + ρ−1(∇T × ∇S)] = D

Dt
[(ω0,ρ0 · ∇σ )u]

+ u · ∇[ρ−1(∇T × ∇S)] +
∂

∂t
[ρ−1(∇T × ∇S)]. (2.34)

Using (2.31), the first term on the right-hand side becomes

∂

∂t

[(
ω0,ρ0 · ∇a

)
u(a, t)

] = ρ−1
0 [∇aT × ∇aS) · ∇a]u(a, t) +

(
ω0,ρ0 · ∇a

)∂u(a, t)

∂t
. (2.35)

Since Du/Dt = ∂u(a, t)/∂t , we use (2.9) and (2.30) to calculate the second term in (2.35):

D

Dt
[ωρ · ∇u] = ρ−1

0 (∇aT × ∇aS) · ∇au + ωρ · ∇ (−∇h + T ∇S)

= ρ−1
0 (∇aT × ∇aS) · ∇au + (T S − H)ωρ, (2.36)

where the matrices S and H are, respectively, the Hessians of S and h:

S = ∂2S

∂Xi∂Xj

, H = ∂2h

∂Xi∂Xj

. (2.37)

It remains to evaluate the first term on the right-hand side of (2.36). Take the ith component
of this vector

ρ−1
0 (∇aT × ∇aS) · ∇aui = ρ−1

0

∂(ui, T , S)

∂(a1, a2, a3)
(2.38)

= ρ−1
0 ∇ui · (∇T × ∇S) det

(
∂Xk

∂aj

)
. (2.39)

Now we know the Jacobian of the transformation a → X(a, t) equals the ratio of the volume
element d3X to d3a:

det

(
∂Xi

∂aj

)
= d3X

d3a
= ρ−1

ρ−1
0

= ρ0(a)

ρ(a, t)
. (2.40)

Finally, we obtain

ρ−1
0 (∇aT × ∇aS)∇au(a, t) = ρ−1(∇T × ∇S) · ∇u(X, t). (2.41)

8
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Therefore, all terms on the right-hand side of (2.36) are known. Up to now we have

b = (T S − H)ωρ + ρ−1(∇T × ∇S) · ∇u

+ u · ∇[ρ−1(∇T × ∇S)] +
∂

∂t
(ρ−1(∇T × ∇S)). (2.42)

We must obtain the last term in (2.42):

∂

∂t
[ρ−1(∇T × ∇S)] = −ρ−2 ∂ρ

∂t
(∇T × ∇S) + ρ−1

[
∇

(
∂T

∂t

)
× ∇S

]

+ ρ−1

[
∇T × ∇

(
∂S

∂t

)]
= ρ−2 div(ρu)(∇T × ∇S)

+ ρ−1∇
(

∂T

∂ρ

∂ρ

∂t
+

∂T

∂S

∂S

∂t

)
∇S + ρ−1∇T × ∇

(
∂S

∂t

)
. (2.43)

We then use entropy conservation and the continuity equation:

∂

∂t
[ρ−1(∇T × ∇S)] = ρ−2 div(ρu)(∇T × ∇S) − ρ−1∇

[
∂T

∂ρ
div(ρu) +

∂T

∂S
u · ∇S

]
× ∇S

− ρ−1∇T × ∇ (u · ∇S) = ρ−2div(ρu)(∇T × ∇S)

−ρ−1∇
[
u · ∇T + ρ

∂T

∂ρ
div u

]
× ∇S − ρ−1∇T × ∇(u · ∇S). (2.44)

Thus, equations (2.43) and (2.44) determine b. Then we have

αb = ω−1
ρ ω̂ · b, χb = ω−1

ρ ω̂ × b, (2.45)

from which we can obtain the quaternion qb = [αb, χb] used in the Riccati relation

Dqσ

Dt
+ qσ � qσ = qb. (2.46)

It is interesting that instead of correspondence (2.15) one may choose the Cauchy vector
ω0,ρ0(a, t) defined in (2.28) and (2.29) which satisfies (2.31). Thus,

w ←→ ω0,ρ0(a, t), (2.47)

σ ←→ ρ−1∇aT × ∇aS (2.48)

may be considered in the Lagrangian coordinates (a, t) and also

b = ρ−1
0 ∇a

(
∂T

∂t

)
× ∇aS = ρ−1

0 ∇a

(
∂T

∂ρ

∂ρ

∂t

)
× ∇aS, (2.49)

where ∂ρ/∂t = Dρ/Dt .
Finally, in this section, we remark that the above formulation for the compressible case is

limited to handling the inclusion of thermodynamic variables which has restricted our choices
of σ and b. These do not include the fluid variables and thus vanish when thermodynamics
is excluded. A full fluid and thermodynamic formulation would be needed to explore the
incompressible limit, which is our ultimate aim. The following section considers another
restricted case.

3. Isentropic (barotropic) as well as incompressible Euler flow

In this section, we assume the entropy S = const in the Euler equations. Instead of studying
ωρ , we study the impulse density function

γ = u − ∇φ = ũ0j (a)∇aj , (3.1)

9
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where ũ0(a) is an arbitrary function fixed by initial conditions (see the appendix). The
function φ in (3.1) is the time-dependent Bernoulli potential which satisfies

Dφ

Dt
= ∂φ

∂t
+ u · ∇φ = 1

2
u2 − h. (3.2)

It is seen directly that

ω = curl γ. (3.3)

On the other hand, using relation (2.30) together with (3.1),

ρ−1(ω · γ) = ρ−1ũ0j (a)ω · ∇aj

= ρ−1
0 ũ0j (a)ω0 · ∇aaj

= ρ−1
0 ũ0j (a)ω0,j

= ρ−1
0 (a)ω0(a) · ũ0(a). (3.4)

Since the flow is isentropic, (2.31) reduces to

∂ω0(a, t)

∂t
= 0 �⇒ ω0 = ω0(a) (3.5)

and so ρ−1(ω · γ) = ρ−1
0 (a)ω0(a) · ũ0(a) is a Lagrangian invariant called spirality (Eshraghi

and Abedini 2005). Equation (3.2) combined with the Euler isentropic equation

Du

Dt
= −∇h (3.6)

yields

Dγi

Dt
= Dui

Dt
− ∂

∂t

(
∂φ

∂Xi

)
− u · ∇

(
∂φ

∂Xi

)

= −
(

∂h

∂Xi

)
− ∂

∂Xi

(
Dφ

Dt

)
+

(
∂uj

∂Xi

) (
∂φ

∂Xj

)

= −
(

∂h

∂Xi

)
− ∂

∂Xi

(
1

2
u2 − h

)
+

(
∂uj

∂Xi

) (
∂φ

∂Xj

)

= −uj

∂uj

∂Xi

+

(
∂uj

∂Xi

) (
∂φ

∂Xj

)

= − ∂uj

∂Xi

(
uj − ∂φ

∂Xj

)
︸ ︷︷ ︸

γj

. (3.7)

Thus, we have

Dγi

Dt
= − ∂uj

∂Xi

γj ⇐⇒ Dγ

Dt
= −γj∇uj = −(RtR

−1)T γ, (3.8)

where the Jacobian matrix R is

Rij = ∂Xi

∂aj

�⇒ R−1
ij = ∂ai(X, t)

∂Xj

, (3.9)

and Rt is its Lagrangian time derivative

Rt = DR

Dt
= ∂R(a, t)

∂t
�⇒ D

Dt
Rij = ∂Ẋi

∂aj

= ∂ui

∂aj

. (3.10)

10
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The superscript T denotes the transpose of a matrix. It is possible to change the form of (3.8)
by noting that

−γj

∂uj

∂Xi

=
(

∂ui

∂Xj

− ∂uj

∂Xi

)
γj − γj

∂ui

∂Xj

= −εijkωkγj − γj

∂ui

∂Xj

= (ω × γ)i − (γ · ∇)ui . (3.11)

Therefore, (3.8) is converted to

Dγ

Dt
= −γ · ∇u + ω × γ. (3.12)

Such a change is possible only for the Euler equation where ω = ∇ × u. We are now ready
for another quaternionic correspondence:

w ←→ γ, (3.13)

σ ←→ −γ · ∇u + ω × γ, (3.14)

and the definitions of ασ and χσ follow accordingly with

qσ = [ασ , χσ ], m = [0, γ]. (3.15)

In fact, we see that

[0, ρ−1ω] � [0, γ] = [−ρ−1(ω · γ), ρ−1(ω × γ)]. (3.16)

From (3.4) we know that ρ−1(ω · γ) = ρ−1
0 (ω0 · γ0) is a constant of motion and it is always

possible to find locally a function φ̃(a) such that (Eshraghi and Abedini 2005)

ω0 · γ0 = ω0 ·u0 − ω0 · ∇aφ̃ = 0, (3.17)

and so at all times

ρ−1(ω · γ) = 0. (3.18)

So at least locally we can write

[0, ω] � m = [0, ω × γ], (3.19)

and we can write a quaternionic form of (3.12) as

Dm

Dt
= [0,a] = qσ � m + [0, ω] � m = (qσ + [0, ω]) � m. (3.20)

According to (3.1), b is

b = D2

Dt2
[ũ0j (a)∇aj (X, t)] = ũ0j (a)

D2

Dt2
∇aj , (3.21)

which is known if the Lagrangian particle paths are known. The Riccati equation is now

D

Dt
(qσ + [0, ω]) + (qσ + [0, ω]) � (qσ + [0, ω]) = qb, (3.22)

where

qb = [αb, χb], αb = γ −1(γ̂ · b), χb = γ −1(γ̂ × b). (3.23)

Let us simplify the Riccati equation (3.22): first, we note that

Dω

Dt
= D(ρωρ)

Dt
= ρωρ · ∇u + ωρ

Dρ

Dt
= ω · ∇u − (div u)ω, (3.24)

11
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or
Dω

Dt
= [RtR

−1 − T r(RtR
−1)]ω, (3.25)

where we have used (3.9). Next, we note that

[0, ω] � qσ = −[ω · χσ , ασ ω + ω × χσ ], (3.26)

and

qσ � [0, ω] = [−ω · χσ , ασ ω + χσ × ω], (3.27)

and so

[0, ω] � qσ + qσ � [0, ω] = 2[−χσ · ω, ασ ω]. (3.28)

We could also use relation (3.3) and consider ω to be curl γ and eliminate the explicit
appearance of ω but we prefer to keep ω explicitly. Finally, the Riccati equation (3.22)
becomes
Dqσ

Dt
+ qσ � qσ = qb +

[
2χσ · ω + ω2,−2ασ ω + (div u)ω − (ω · ∇)u

]
. (3.29)

4. Relativistic ideal flow

Relativistic fluids are recognized through two main properties: the fluid velocity (v � c) and
the relativistic temperature (kBT � m0c

2), where m0 is the rest mass of the fluid particles, T is
the Boltzmann temperature and kB is the Boltzmann constant. The relativistic fluid equations
are

Dp

Dt
= −n−1∇P = −(γ n′)−1∇P, (4.1)

D(γn′)
Dt

= −(γ n′) div u, (4.2)

DS

Dt
= 0, (4.3)

which must be closed with the equation of state. Here n′ is the number density in the inertial
frame momentarily co-moving with the fluid, that is, the frame at which the fluid is at rest.
We also have

p = γ h

c2
u (4.4)

which is the relativistic temperature-dependent momentum and h is the heat function for each
particle. All thermodynamical variables, such as the pressure P, the entropy per particle S and
the heat function per particle h, are defined in the rest frame in which the number density of
fluid particles is n′. We also know that

n = γ n′, γ = 1√
1 − u2/c2

, (4.5)

where n is the number density measured in the laboratory system.
Similar to the non-relativistic flow, we can use the thermodynamic relation dh =

T dS + n′−1 dP to obtain

−∇P

γn′ = −∇h

γ
+

T

γ
∇S (4.6)

12
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and employ it in the first equation (4.1) to find

Dp

Dt
= −∇h

γ
+

T

γ
∇S. (4.7)

Definition (4.4) leads to

u · ∇p = c2

γ h
(p · ∇)p

= c2

γ h

[
∇

(
1

2
p2

)
− p × curl p

]

= 1

2γ h
∇[h2(γ 2 − 1)] − u × curl p

= ∇(γ h) − 1

γ
∇h − u × curl p, (4.8)

which, when substituted into (4.7), yields

∂p

∂t
= u × curl p − ∇(γ h) +

T

γ
∇S. (4.9)

We then define the relativistic vorticity Ω

Ω ≡ curl p = ∇ ×
(

γ h

c2
u

)
= γ h

c2
ω + ∇(γ h) × u

c2
. (4.10)

Thus, taking the curl of (4.9) we find

∂Ω
∂t

= curl(u × Ω) + ∇
(

T

γ

)
× ∇S. (4.11)

Following the same procedure as in section 2.1, we reach the dynamical relation

D

Dt

(
Ω
γ n′

)
=

(
Ω
γ n′ · ∇

)
u + ∇

(
T

γ

)
× ∇S. (4.12)

To obtain a relativistic form of Ertel’s theorem (Eshraghi 2003), similar to the non-relativistic
flow, we define

U ≡ pj∇aXj(a, t) (4.13)

where again we have used the Lagrangian variables used in (2.28) and (2.29). Consequently,
we can define

Ω(a, t) = curlaU (4.14)

and so (see the appendix)

Ω
n

=
(

Ω0

n0(a)
· ∇a

)
X(a, t),

Ω0

n0
=

(
Ω
n

· ∇
)

a(X, t), (4.15)

leading to

Ω
n

· ∇ = Ω0

n0(a)
· ∇a. (4.16)

In the appendix, it is also shown that

∂Ω0

∂t
(a, t) = ∇a

(
T

γ

)
× ∇aS(a), (4.17)

13
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which immediately yields Ertel’s theorem:

∂

∂t

(
Ω0

n0
· ∇aS

)
= 0,

D

Dt

(
Ω
γ n′ · ∇S

)
= 0. (4.18)

Let us restrict ourselves to the isentropic or barotropic flow in which

S = const, (4.19)

and hence Ω0 = Ω0(a) and

D

Dt

(
Ω
γ n′

)
=

(
Ω
γ n′ · ∇

)
u. (4.20)

We now have the correspondence

w ←→ Ω
γ n′ , (4.21)

σ ←→
(

Ω
γ n′ · ∇

)
u. (4.22)

Then

ασ = Ω̂ · (Ω̂ · ∇)u, χσ = Ω̂ × (Ω̂ · ∇)u. (4.23)

Now we must calculate b = Dσ/Dt

Dσ

Dt
= D

Dt

(
Ω
γ n′ · ∇

)
u =

(
Ω
γ n′ · ∇

)
Du

Dt
. (4.24)

In order to calculate Du/Dt , we consider equations (4.19) and (4.7)

D

Dt

(
γ h

c2
u

)
= −∇h

γ
, (4.25)

from which we find

Du

Dt
= − c2

h2

∇h

h
− u

[
1

γ

Dγ

Dt
+

1

h

Dh

Dt

]
. (4.26)

Even with the use of the equation of state and the continuity equation (4.1), it is unfortunately
clear that, unlike non-relativistic flow, it is not possible to eliminate all time derivatives. To
proceed we would need to be able to measure Du/Dt in the laboratory. In other words,
quaternionic formulation would be greatly useful if we could directly measure σ and b in the
laboratory. Then we could use them in all formulae of section 1 to find quaternionic frames
and their related velocities suitable for applications. In order to measure b in the laboratory,
instantaneous measurements can be made of the system (for example, the fluid or plasma).
Then it is possible to provide a spatial profile of various physical parameters and therefore is
not difficult to calculate ‘spatial’ derivatives of those parameters. Hence, if b is expressible in
terms of only spatial derivatives we will be successful in using quaternions. Such a situation
happens for non-relativistic fluids as was shown earlier, but unfortunately in relativistic flows
we have to measure at least one ‘time’ derivative (see equation (4.26)). Although this makes
the problem more difficult in the laboratory, nevertheless the measurement of quaternionic
time derivatives is much easier than the measurement of the time derivative of other physical
parameters.

As the last example, we consider the relativistic impulse density function Γ (see the
appendix)

Γ = p − ∇ = U0j (a)∇aj (X, t), (4.27)

14
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where  is the Bernoulli potential satisfying

D

Dt
= − h

γ
. (4.28)

We see that

DΓ
Dt

= Dp

Dt
− ∇

(
D

Dt

)
+

∂

∂Xj

∇uj

= −∇h

γ
+ ∇

(
h

γ

)
+

∂

∂Xj

∇uj

= h∇(γ −1) +
∂

∂Xj

∇uj . (4.29)

However,

∇(γ −1) = −γ uj

c2
∇uj (4.30)

DΓ
Dt

=
(

−γ huj

c2
+

∂

∂Xj

)
∇uj = −�j∇uj , (4.31)

from which
DΓ
Dt

= −�j∇uj = −(RtR
−1)T Γ. (4.32)

These equations are similar to (3.8) for γ except that here Ω 
= curl u. Hence we have the
correspondence

w ←→ Γ, (4.33)

σ ←→ −�j∇uj , (4.34)

with

ασ = −Γ̂ · (Γ̂ · ∇)u, χσ = −Γ̂ × (Γ̂ · ∇)u. (4.35)

Thus, if the Lagrangian paths are known, we have

b = D2Γ
Dt2

= U0j

D2

Dt2
∇aj (X, t), (4.36)

from which qb = [αb, χb] can be calculated.

Appendix. The Weber transformation and Lagrangian variables for the
non-relativistic and relativistic cases

A.1. Non-relativistic flows

We begin with the Euler equation

Du

Dt
= DẊ

Dt
= Ẍ = −∇p

ρ
= −∇h + T ∇S. (A.1)

Taking the ith component of the above equation and multiplying by ∇aXj to obtain

Ẍj∇aXj = −∇ah + T ∇aS. (A.2)
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It is now seen that

Ẍj∇aXj = D

Dt
(Ẋj∇aXj) − Ẋj∇aẊj

= D

Dt
(uj∇aXj) − 1

2
∇a

(
u2

j

)
. (A.3)

With ũ = uj∇aXj we have

Dũ

Dt
= ∂ũ

∂t
(a, t) = −∇a

(
h − 1

2
u2

)
+ T ∇aS. (A.4)

Taking the curl with respect to a gives

Dω0

Dt
= ∂ω0

∂t
(a, t) = ∇aT × ∇aS, (A.5)

where ω0 = ∇a × ũ; now let us find the relationship between ω = curl u and ω0 = ∇a × ũ:

ω0i = εijk

∂ũk

∂aj

= εijk

∂

∂aj

(
u�

∂X�

∂ak

)

= εijk

∂u�

∂Xm

∂Xm

∂aj

∂X�

∂ak

+ εijku�

∂2X�

∂aj∂ak︸ ︷︷ ︸
zero

. (A.6)

But

εijk = εnjkδni = εnjk

∂Xp

∂an

∂ai

∂Xp

, (A.7)

and so

ω0i = ∂u�

∂Xm

(
εnjk

∂Xp

∂an

∂Xm

∂aj

∂X�

∂ak

)
∂ai

∂Xp

. (A.8)

On the other hand, we know that

εnjk

∂Xp

∂an

∂Xm

∂aj

∂X�

∂ak

= εpm� det R, Rij = ∂Xi

∂aj

, (A.9)

and therefore

ω0i = (det R)εpm�

∂u�

∂Xm

∂ai

∂Xp

. (A.10)

With ωp = εpm�
∂u�

∂Xm
, we have

ω0i = (det R)ω · ∇ai. (A.11)

Thus, ω0 = (det R)ω · ∇a. The inverse relation is also found

ω0j

∂Xi

∂aj

= (det R)ωk

∂aj

∂Xk

∂Xi

∂aj

= (det R)ωkδik = (det R)ωi. (A.12)

Therefore

ω = 1

det R
(ω0 · ∇a)X. (A.13)

We have seen in section 1 that

det R = ρ0(a)

ρ0(a, t)
, (A.14)

and consequently we obtain equations (2.28) and (2.29).
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In this part, we proceed to the study of the non-relativistic impulse density function γ.
We saw that in the isentropic case (A.4) reduces to

Dũ

Dt
= ∂ũ(a, t)

∂t
= ∇a

(
1

2
u2 − h

)
= ∇a

(
Dφ

Dt

)
= ∇a

(
∂φ(a, t)

∂t

)
. (A.15)

This means that
∂ũ(a, t)

∂t
= ∂∇aφ(a, t)

∂t
, (A.16)

while the Bernoulli potential satisfies

Dφ

Dt
= ∂φ(a, t)

∂t
= 1

2
u2 − h + f (t), (A.17)

with f (t) an arbitrary function of t which can be put to zero. Thus,

Dφ

Dt
= ∂φ(a, t)

∂t
= 1

2
u2 − h. (A.18)

Consequently,

∂ũ(a, t)

∂t
= ∂∇aφ(a, t)

∂t
, (A.19)

which means that ũ(a, t) = ũ0(a)+∇aφ. In turn this implies that ω0 = curlau = curlaũ0(a)

and
Dω0

Dt
= 0. (A.20)

Thus, ω0 = ω0(a). We see that at t = 0, R = I and X(a, 0) = a, so ũ|t=0 = u|t=0 and
hence at any point X in space curla ũ|t=0 = curl u|t=0 = ω|t=0. We then conclude that in
the isentropic case ω0 = curlaũ = curlaũ(a) = ω0(a) is an invariant; that is, Dω0/Dt = 0.
Thus,

ω0 = ω0|t=0 = ω|t=0 = initial vorticity. (A.21)

Consequently,

ωρ |t = Rω0,ρ0(a) = Rωρ |t=0, (A.22)

ω0,ρ0 = ωρ |t=0 = R−1ωρ |t . (A.23)

We multiply the j th component of ũ = ũ0 + ∇aφ by ∇aj and sum over j to obtain

ũj∇aj = ũ0j∇aj +
∂φ

∂aj

∇aj (A.24)

and use the fact that ũ = uj∇aj . This means that γ = u − ∇φ = ũ0j (a)∇aj . Other facts
about γ such as the invariance of ωρ · γ and Dγj/Dt = −γj∇uj were found in section 3.

A.2. Relativistic flows

Finally, we derive the Weber transformation for relativistic isentropic flow: for work on the
Weber transformation in an Euler and Navier–Stokes context, see Constantin (2002, 2003,
2005):

Dp

Dt
= ṗ = −γ −1∇h, (A.25)

from which we conclude that
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ṗj∇aXj = −γ −1 ∂h

∂Xj

∇aXj, (A.26)

ṗj∇aXj = −γ −1∇ah. (A.27)

But

ṗj∇aXj = D

Dt
(pj∇aXj)︸ ︷︷ ︸

U

−pj∇aẊj (A.28)

= DU

Dt
− pj∇aXj (A.29)

= DU

Dt
+ h∇a(γ −1), (A.30)

so
DU

Dt
= −γ −1∇ah − h∇a(γ −1) (A.31)

and therefore
∂U (a, t)

∂t
= −∇a(hγ −1) = ∇a

(
D

Dt

)
= ∂∇a(a, t)

∂t
, (A.32)

while
D

Dt
= ∂(a, t)

∂t
= −hγ −1. (A.33)

Thus, U (a, t) = U 0(a) + ∇σ, which implies that

Uj∇aj = U0j (a)∇aj +
∂

∂aj

∇aj = U0j∇aj + ∇. (A.34)

However, Uj∇aj = pk
∂Xk

∂aj
∇aj = pk∇Xk = p, so

Γ ≡ p − ∇ = U0j (a)∇aj . (A.35)

Also there are the relativistic spirality and helicity conservations (Eshraghi 2003)
Γ ·Ω

n
= U0j (a)

Ω · ∇aj

n
= U0j (a)

Ω0 · ∇aaj

n0
= Ω0 ·U 0

n0
(a), (A.36)

which comes about because
∂U (a, t)

∂t
= −∇a(hγ −1) + T ∇aS, (A.37)

and
∂Ω0(a, t)

∂t
= ∇aT × ∇aS. (A.38)

For isentropic flow ∇aS = 0 and so DΩ0/Dt = 0. Similar to the non-relativistic case

Ω
n

=
(

Ω0

n0
· ∇a

)
X, (A.39)

which implies that

Ω0

n0
=

(
Ω
n

· ∇
)

a, (A.40)

and so
Ω
n

· ∇ = Ω0

n0
· ∇a. (A.41)
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